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Introduction 
 
I assume that the reader is familiar with the Spherical harmonics, Pn, method and the 
discrete ordinates, Sn, method; for a derivation of the equations used in these methods see 
the appendix. I will only discuss the Boltzmann equation in one dimension, and the Sn 
method using Gaussian quadrature. I will do this merely to simplify the following 
discussion; once you understand the concepts presented here you can easily extend the 
conclusions to more general situations. 
 
Why are the spherical harmonics Pn and discrete ordinate Sn methods, or more correctly 
the Pn and Sn+1 methods, equivalent, e.g., P3 is equivalent to S4? When the Sn method uses 
a Gaussian quadrature most textbooks will tell you that both methods are equivalent to 
assuming that the angular flux can be represented by a Legendre polynomial expansion of 
order n. 
 
Most textbooks are wrong [1]! We know that the Sn method constrains the “particles” to 
travel in discrete directions; when Gaussian quadrature is used these discrete directions 
correspond to the zeros of the Legendre polynomial Pn+1( ). What is not immediately 
obvious is that the P

�

n method constrains the “particles” in exactly the same way. That is 
why the two methods are equivalent. Let’s discuss this in terms of physics and 
mathematics. 
 
Physical Argument 
 
First let’s look at this problem from a physical viewpoint. The standard Pn method 
assumes that the (n+1)-th Legendre coefficient of a Legendre expansion of the angular 
flux is zero, at all spatial points, energies, and times; see the appendix for a derivation of 
the Pn equations. This seems like an innocent enough assumption. But think about it: 
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physically how can the (n+1)-th Legendre coefficient of the angular flux be zero at all 
spatial points, energies, and times? The only way that this can occur is if the “particles” 
are constrained to travel only in discrete directions corresponding to the zeros of Pn+1( ). 
Since the Legendre polynomials are a complete, orthogonal set, physically there is no 
other way that this can occur. 

�

 
Mathematical Argument 
 
Let’s now look at this mathematically. Notice that above I didn’t say that the Pn method 
is equivalent to assuming that the angular flux is an n-th order polynomial; this is a 
common error made by many textbooks. All I said was that the (n+1)-th Legendre 
coefficient of a Legendre expansion of the angular flux is zero, at all spatial points, 
energies, and times. As we will see below, it is easy enough to prove that the Pn method 
is NOT equivalent to assuming the flux is an n-th order polynomial. Assuming that the Pn 
and Sn methods are equivalent, let’s see what this implies. I claim that the Pn method is 
equivalent to assuming the angular flux is expressed as an infinite Legendre series, and 
the Sn method models particles that stream in discrete directions. In which case if the two 
solutions are equivalent we have, 
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Multiplying by Pk( ) and integrating over all directions we obtain a definition of an 
infinite number of Legendre coefficients, F

�

k(Z), k = 0 to infinity, in terms of the n+1 
Gl(Z), l = 1 to (n+1), terms of the Sn solution, 
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The first point to note is that since we are using Gaussian quadrature the discrete 
ordinates of the Sn method, � l, are the zeroes of Pn+1, so we can immediately see that the 
(n+1)-th Legendre coefficient of the Pn solution, namely Fn+1(Z), is exactly zero, which is 
what we assume for the Pn method, so that this solution is of the form we expect, 
 

Fn+1(Z)                              =  G�
�

�

1

1

n

l
l(Z) Pn+1(� l) = 0, because Pn+1(� l) = 0  
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The next point to note is that the higher order Legendre coefficients, for k=(n+2), 
(n+3),….to infinity, are generally not zero, so that the Pn solution is not a polynomial of 
order n, but rather an infinite series, in which only the (n+1)-th Legendre coefficient is 
zero. 
 
Another point to note is that the infinite series solution to the Pn equations converges to 
the Sn+1 solution, and as such is equivalent to streaming in the discrete directions 
corresponding to the zeroes of the (n+1)-th Legendre polynomial.  
 
We can also see that the higher order Legendre coefficients are not zero by examining the 
Pn equations. These equations couple three successive Legendre moments of the angular 
flux, in the form, (see, the appendix for a derivation of this equation), 
 

kkkkk FsktFkFkFk �������� �� )12()12(****)1( 11 ��  
 
We close this set of equations by assuming that the (n+1)-th Legendre moments, Fn+1, is 
zero. We then end up with (n+1) equations in (n+1) unknowns, Fk, k = 0 to n, which we 
can solve. 
 
What’s not usually included in a description of the Pn method is what the higher order 
equations tell us. For example, let’s look at the above equaton with k = (n+1), 
 

1112 )32()32(**)1(**)2( ���� ��������� nnnnn FsntFnFnFn ��  
 
Since we assume that Fn+1 is zero, this equation tells us that Fn+2 is not zero, but rather 
that it is linearly dependent on Fn. So that once we solve the Pn equations to define the 
Legendre moments of the flux, Fk, k = 0 to n, we can use Fn to define Fn+2. We can 
continue in this manner to define all of the higher order Legendre moments toward n = 
infinity. 
 
In general, since the Pn equations couple three successive Legendre moments if we 
assume any two successive moments are exactly zero, then we must conclude that the 
same is true of the third. This would allow us to march in increasing order n, upward 
from the n-th equation to prove that all higher order moments are zero. However, it 
would also allow us to march in decreasing order n, downward from the n-th equation to 
prove that all lower order moments, including the scalar flux, F0(Z) is exactly zero. This 
leads to the nonsense conclusion that the only possible solution is zero. Therefore we 
must conclude that two successive moments cannot be zero. 
 
This conclusion can be generalized even further by realizing that no two Legendre 
polynomials of different order n, have the same zeroes, except for the trivial case,  = 0. 
Therefore our definition of the infinite series of Legendre moments in terms of the S

�

n 
solution, 
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tells us that in general all of the Legendre moments, except for (n+1), are non-zero. 
 
So What? 
 
Generally if the Pn or Sn methods are used only to define the lower order moments of the 
flux, such as the scalar flux and current, the fact that both methods correspond to 
streaming in discrete directions will have little impact on your results, and for a wide 
class of applications you can obtain accurate answers for these lower order moments. 
Therefore for these applications there is no problem in your interpretation of the results. 
 
This is because the proper way to interpret the Pn and Sn solutions is not in a continuous 
sense as a function of direction, but rather in an integral sense. For example, Gaussian 
quadrature can accurately define the integral of polynomials. Note, I said the integral 
effect of polynomials, not necessarily the continuous polynomials themselves. So that the 
Sn, and the equivalent Pn method, can accurately define the lower order moments of our 
angular distribution, such as the scalar flux and current, which in many applications is all 
that we are interested in. 
 
However, a problem can occur if you assume that the Pn solution is an n-th order 
polynomial that can be used to define the angular flux as a continuous function of 
direction; as you can see from the above, this is not true, even though most textbooks say 
that it is true. Again, let me repeat: the Pn solution is an infinite Legendre series in which 
only the (n+1)-th Legendre moment is zero, and this series converges to streaming in 
discrete directions, corresponding to the zeroes of Pn+1( ). As such this solution does not 
directly define the continuous angular distribution of the flux. Failure to realize this can 
lead to inaccurate results, e.g., there is no guarantee that the sum of the first (n+1) terms 
of the Legendre series is everywhere positive, and as such it is chancy to assume that this 
is a good approximation to the actual angular distribution. 

�

 
Improving our Discrete Ordinate Method 
 
Once you accept the equivalence between the Pn and Sn methods you can use this 
equivalence to good advantage. You can use the best features of each method to improve 
the methods you use. For example, in the Pn method most time is spent finding the 
eigenvalues; once they are defined it is merely a matter of matching boundary conditions. 
In contrast, in the Sn method most time is spent iterating between spatial points, along the 
characteristic directions. As a result, in terms of speed, Pn works well in optically thick 
spatial regions where we need only be concerned with matching boundary conditions, 
and Sn converges fastest in optically thin spatial zones where not too many spatial points 
are required. So that you can use the two methods in combination to accelerate your 
calculations.  
 
As another example of what we can learn from the equivalence between these two 
methods, consider the relationship between the Legendre moments from the Pn method 
and the discrete weights from the Sn method, 
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But we also know that the Pn solution is a sum of exponentials, 
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Where the eigenvalues � m depend on the multiplication of the system, and the 
coefficients Fkm depend on the boundary conditions. 
 
This in turns tells us the form of the Sn solution that we should expect, 
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Above I said that the Pn and Sn methods are equivalent. This is true only up to the point 
where the Sn method introduces an additional assumption by expanding the flux in space; 
see the appendix for a derivation of the Sn equations. This additional step breaks the exact 
equivalence between the two methods, and can lead to non-physical results, such as 
oscillating or even negative flux, in Sn calculations.  
 
The Sn method is not the only discrete ordinate method available to us. Based upon the 
above equivalence between the Pn solution, that we know is a sum of exponentials in 
space, and the Sn solution, suggests that rather than using the most common Sn 
assumption that the flux is linear in space, it would be better to assume exponential 
variation. This is what the NIOBE method [Numerical Integration Of the Boltzmann 
Equation] does; this method was developed circa 1960 by the United Nuclear Corp. [2], 
but was somehow forgotten when the Sn method came into vogue. 
 
Let me illustrate in the simplest case: planar geometry with isotropic scattering; see the 
appendix for details, 
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In this form we find that, 

1) If you use any method to accurately define the scalar flux, N0(Z), you can define 
the angular flux as a line integral, starting from your known boundary condition 
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and methodically working your way through your geometry. That’s essentially all 
a discrete ordinate method does, except in the above equation you are not 
constrained to a given set of discrete ordinates, i.e., you can define the angular 
distribution in as many directions as you need. 

2) In order to do this you need only explicitly introduce an approximation for the 
scalar flux, N0(Z), but not the angular flux, which in the above equation only 
appears at discrete spatial points, Z1 and Z2. 

3) For a discrete ordinate method the above equations can be used to illustrate the 
NIOBE method in which exponential, rather than linear, variation of the scalar 
flux, N0(Z) is assumed. The resulting algorithm is stable and if you start from 
non-negative boundary conditions to initialize your iteration, you will find that 
unlike the Sn method, you cannot end up with non-physical, negative flux. 

4) Since there are so many Sn codes available, what’s nice about the NIOBE method 
is that it is so similar to the Sn method that it is fairly easy to modify an existing 
Sn code to use the NIOBE method. 

5) Above I’ve only discussed isotropic scattering in planar geometry. This was done 
only to simplify notation; once you understand the NIOBE concept you can 
generalize to anisotropic scattering in more complicated geometry, e.g., the 
NIOBE method is so similar to the Sn method that any geometry that Sn can 
handle, can be handled by NIOBE. 

  
Conclusions 
 
It has been shown that both the Pn and Sn methods constrain the “particles” to stream in 
discrete directions. In particular it has been shown that contrary to what it says in most 
textbooks, the Pn solution is not an n-th order polynomial; rather it is an infinite series of 
Legendre polynomials, in which only one of the Legendre coefficients is zero, and the 
series converges to the same streaming in discrete directions that is used in the Sn 
method. This is why the two methods are equivalent. 
 
This conclusion means that you should not assume that the Pn solution is an n-th order 
polynomial that can be used to accurately define the angular distribution. If you do need 
to define the angular distribution, I suggest you consider using the above defined line 
integral using the previously calculated lower order Legendre moments of the flux. 
 
Realizing the equivalence between these two methods has the potential to improve how 
our discrete ordinate methods are used, and how to define an angular flux. 
 
References 
 
[1] There are so many textbooks that make the wrong assumption about the spherical 
harmonics, Pn, method, that it does not seem fair for me to reference any one textbook to 
illustrate this error. 
 
[2] “A program for the Numerical Integration of the Boltzmann Transport Equation – 
Niobe,” by S. Preiser, ARL 60-314 (Dec. 1960).    
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 Appendix 
 
Derivation of the Spherical Harmonics, Pn, Equations 
 
In order to simplify the notation and equations, I will derive the Pn equations in planar 
geometry, for the time independent case, 
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Multiply by the Legendre polynomial, (2n+1)Pn( ), and use the relationship between 
Legendre polynomials of varying orders, 

�
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to obtain the Pn equations, that define the coupling between any three successive 
moments of the angular flux, 
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The infinite set of equations is closed by assuming that Fn+1(Z) is zero; this gives us (n+1) 
equations, in (n+1) unknowns, Fk, k=0 to n. It is well known that the solution of these 
equations is the sum of a series of discrete eigenvalues, so we can assume, 
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and the equations become, 
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This is an eigenvalue problem where we must solve for the set of discrete eigenvalues, 
� , and the coefficients Fn are then defined to match boundary conditions. 
 
Derivation of the discrete Ordinate, Sn Equations 
 
I will derive the SN equations for exactly the same situation as I used above to derive the 
Pn equations; namely planar geometry, for the time independent case, 
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where the Legendre moments of the flux are defined by quadrature, 
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We will solve the above equation using N discrete directions for , �
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Integrating over a spatial interval Z1 to Z2 
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Defining, 
 
F(j+1/2,k) = F(Z2, )                   [cell edge flux] k�
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To solve these equation we assume a relationship between cell average flux and cell 
average fluxes. The most common assumption is the “diamond difference” scheme, 
where the cell average flux is assumed to be equal to the average of the cell edge fluxes, 
e.g., 
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which is equivalent to assuming linear interpolation of the angular flux. 
 
Derivation of the NIOBE Equations 
 
I will derive the NIOBE equations for exactly the same situation as I used above to derive 
the Pn equations; namely planar geometry, for the time independent case, 
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We can write this in a simpler form by multiplying by exp[  and combining the 
two terms on the left hand side of our equation, to find, 
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which we can immediately integrate between any two space points Z1 and Z2, to find, 
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In order to solve these equations the only approximation that we have to explicitly 
introduce is an approximation for the spatial variation of the Legendre moments of the 
flux. In particular note that we do not have to explicitly introduce any approximation for 
the spatial variation of the angular flux, F(Z, ), since this only appears in the above 
equation at discrete space points Z1 and Z2. 

�

 
For example, in the simplest case with isotropic scattering, in order to solve these 
equations for the angular flux, F(Z, ), we only have to explicitly introduce an 
approximation for the scalar flux, F

�

0(Z). 
 
Here we are free to introduce any approximation for the Legendre moments, as long as 
our approximation is consistent with the derived angular flux at the discrete space points 
Z1 and Z2. For example, for the angular distribution at any given space point we could 
use the same quadrature approach as that used by the Sn method, or we could assume the 
angular distribution is piecewise continuous; there are any number of physically 
acceptable assumptions that can be used. Similarly for the spatial variation of the 
Legendre moments of the flux, we could the same most common linear assumption used 
by the Sn method, or we could assume exponential variation; again, there are any number 
of physically acceptable assumptions that can be used. 
 
Derivation of the Case’s Method 
 
I will derive Case’s method for exactly the same situation as I used above to derive the Pn 
equations; namely planar geometry, for the time independent case, 
 

�
�

���
�

�
L

l
ZtF

Z
ZF

02
1),(),(

�
�

� s� Fl(Z)Pl( ) �

 
Assuming exponential variation. 
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Which defines the angular distribution, F( ), directly in terms of its Legendre moments, 
F

�

l. Multiplying by Pk( ) and integrating over  we define the Legendre moment, � �
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In general this is a coupled set of transcendental equations defining the eigenvalues � . In 
the simplest case of isotropic scattering we have, 
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In this case the solution is a single pair of discrete eigenvalues, +/-� 0, plus a continuum 
for �  between –1 and +1, 
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Case’s “solution” is really just a transformation of the original differential equation into 
an integral form, that can be just as difficult to solve as the original form. However, what 
this approach tells us is the eigenvalues; particularly the discrete eigenvalues. When you 
use any of the above described methods you are approximating these eigenvalues, and the 
accuracy of your approximation depends both on the order of the method that you use 
[e.g., SN, where N is the order] and the quadrature used [above I’ve only discussed 
Gaussian quadrature, but we could use a different quadrature]. I’ll merely mention here 
that one option that you have is to define your quadrature to reproduce the discrete 
eigenvalues of your system, as defined by Case’s method.
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